
Universidad de La Laguna. ESIT Informática
Tercero del Grado de Informática. Computación

PROCESADORES DE LENGUAJES. JULY UNIQUE CALL
Use English for your answers. 2 pages

Name, Alu and GitHub ID::

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to
read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript
Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is
completely language independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make
JSON an ideal data-interchange language.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one
form or another. It makes sense that a data format that is interchangeable with programming languages
also be based on these structures.

In JSON, they take on these forms:

1. An object is an unordered set of name/value pairs. An object begins with { (left brace) and ends
with } (right brace). Each name is followed by : (colon) and the name/value pairs are separated by
, (comma).

2. An array is an ordered collection of values. An array begins with [(left bracket) and ends with] (right
bracket). Values are separated by , (comma).

3. A value can be a

1. string in double quotes,

2. or a number,

3. or true

4. or false

5. or null,

6. or an object

7. or an array.

4. Whitespace can be inserted between any pair of tokens.

These structures can be nested. That completely describes the language.

1. To do if you have not passed the 3d exam (Pegs, LR).

Write a PEGJS that receives as input a JSON input and returns the corresponding JavaScript object

(a) Be cautious when parsing null in PEGjs. In PEGjs you can’t return null inside a semantic action
because that would mean parse failure

(b) A string is a sequence of zero or more Unicode characters, wrapped in double quotes. To help you
with your work, here is the rule for a single char:

char

= [^"\\\0-\x1F\x7f]

/ ’\\"’ { return ’"’; }

/ "\\\\" { return "\\"; }

/ "\\/" { return "/"; }

/ "\\b" { return "\b"; }

/ "\\f" { return "\f"; }

/ "\\n" { return "\n"; }

/ "\\r" { return "\r"; }

/ "\\t" { return "\t"; }

/ "\\u" digits:$(hexDigit hexDigit hexDigit hexDigit) {

return String.fromCharCode(parseInt("0x" + digits));

}

hexDigit

= [0-9a-fA-F]

The String method fromCharCode() converts a Unicode number into a character.

(c) A number is very much like a C or JavaScript number, except that the octal and hexadecimal
formats are not used. To simplify your work, here are some PEGjs definitions you can assume in
your solution:

int

= digit19 digits

/ digit

/ "-" digit19 digits

/ "-" digit

frac = "." digits

exp = e digits

digits = digit+

e = [eE] [+-]?

digit = [0-9]

digit19 = [1-9]

2. (a) Write a Jison program that solves the problem posed in the first question. It has to include the
lexical analyzer, the grammar and the necessary semantic actions for building the JavaScript Object.
(To do if you have not passed the 3d exam (PEGs, LR)).

(b) Write a trace of the LR algorithm for the input {"a": 4 } (skip if you go to cont. eval.)

3. To do if you have not passed the 2nd exam (PDR).

Write a JavaScript Recursive Descent Parser for the JSON language as posed in the first question (skip
the lexer if you go to cont. eval.)

Page 2

